
Process Migration in Sprite:

A Status Report

Fred Douglis John Ousterhout

Computer Science Division

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

spriters@ginger.Berkeley.EDU

1 Introduction

This article discusses the history of process migration in Sprite. It focusses on implementation

details, describing how we provide fully transparent, preemptable remote execution. Our limited

experience with migration suggests that we have met our original goal of sharing processor cycles

transparently while preserving response times for users. However, this capability has come at a

much greater implementation cost than we had anticipated. Our greatest problem resulted from

changes to the rest of the kernel breaking process migration when migration was not used regularly

enough to learn about problems as they arose.

The next section describes the goals of process migration in Sprite. Section 3 discusses the

implementation of migration, and Section 4 gives a preliminary evaluation of the utility of process

migration in our environment.

2 Goals

We implemented process migration with three goals in mind:

1. Take advantage of idle processors. In a network of workstations, a number of processors

may be unused at any given time. We wanted users to be able to improve throughput by

running programs in parallel on multiple hosts.

2. Share cycles transparently. Just as the �le system hides the location of �les from users,

the kernel should hide the location of processes. To a user taking advantage of idle machines,

nothing should be di�erent except the speed of execution. Above all, programs should not

be aware if they are executing on a di�erent machine from one moment to the next, and

ideally no restrictions should be placed on what processes are allowed to migrate.

3. Preserve response times for users. We believed users would be reluctant to allow their

workstations to be used in their absence, if they would su�er prolonged degraded response

when they returned.

The next section describes how the implementation of process migration in Sprite addresses these

goals.

1

3 Implementation

Process migration in Sprite combines transparent remote execution with eviction. In Sprite,

each process appears to run on a single host throughout its lifetime. This host is known as the

home node of the process. Regardless of where the process physically executes, it appears in

listings of processes on its home node; any host-speci�c devices it opens, such as the display or

system log �le, are from its home node; even internet connections, such as rcp or rlogin, are

performed through its home node. Any e�ects produced by the process are done as though the

process were executing on its home node, including the extent to which it creates child processes:

thus, its descendants have the same home node as the process regardless of where they execute. If

any process is running someplace other than its home node, and the host on which it is executing

is reclaimed|the workstation receives input from its console|then the process is immediately

evicted by migrating it back to its home node.

Sprite supports fully transparent remote execution by providing support in the kernel for

foreign processes; that is, processes that are not executing on their home node. Sprite has a Unix-

like system call interface, in which processes trap into the kernel on the machine on which they

execute. For foreign processes, the kernel distinguishes between location-dependent and location-

independent calls. Location-dependent calls are system calls that may have a di�erent e�ect

depending on the host on which they are executed: for example, accessing the name of the host

or the time-of-day clock. Location-independent calls are system calls that have the same e�ect

regardless of their location: for example, calls that access the �le system. Sprite kernels forward

the location-dependent system calls of a foreign process to its home node for interpretation, but

they handle location-independent calls without redirection. As the system has matured, we have

attempted to make more and more calls location-independent in order to avoid the overhead and

complexity of forwarding calls; most of the remaining location-dependent calls deal with process

management and/or a�ect the user's perception of executing processes: the fork , exec, exit , and

wait calls are all handled partially on a process's home node since the home node is a party to the

creation and destruction of all processes.

Sprite supports eviction with a four-pronged policy:

1. A daemon process on each host monitors its load average and idle time, and the daemon

initiates an eviction procedure on each foreign process on the host if it detects activity at the

workstation's console. (The load average is used primarily to determine when to accept new

foreign processes: if the load average is low and there has been no recent activity, foreign

processes are allowed.)

2. The home node of a process is ultimately responsible for it. If the process is evicted, it

is migrated back to its home node; the process may be migrated again if another host is

available.

3. The process is suspended while it is migrated. Permitting an evicted process to execute

while its virtual memory image is transferred to disk would reduce the time during which

the process is frozen but also reduce the processing power available to the machine's owner

while the evicted process continues to execute [5].

4. No residual dependencies may be left on the host after eviction. The time to migrate a

process may be reduced substantially by retrieving the memory image of a migrated process

from its previous host as pages are referenced [6]. However, copy-on-reference requires that

the former host continue to dedicate resources and service requests from the evicted process

2

for a longer period of time than would be necessary in a system that copies the memory

along with the rest of the process's state. We believe it is reasonable for a process's home to

provide support for it throughout its lifetime, but another host should only need to provide

resources to a foreign process as long as the process executes on that host.

Migrating a process consists of several steps. First, the process is signalled: at the time the

signal is handled in the kernel, the state of the process within the kernel is simple, well-de�ned,

and easily recreatable on the target host. Second, the process state is encapsulated and sent to the

target. This includes information such as register contents, program counter, signal masks, and so

on. Third, the virtual address space of the process is written to swap �les, and the page tables are

encapsulated and transferred, along with references to the swap �les. The process demand-pages

its virtual image from the swap �les once it resumes execution. Finally, the open �les of the

process are encapsulated and transferred.

Encapsulating the state of �les and transferring open �les, while keeping �le caches consistent,

was the single hardest problem we faced. Since �le servers keep track of which hosts are reading

or writing each �le, migrating a process requires that �le servers atomically update their notion

of how the process's �les are accessed. For example, if a process has a �le open for writing,

and it forks and migrates a child, the �le would then be open for writing on two di�erent hosts;

Sprite's cache consistency algorithm dictates that the �le be made non-cacheable on the machines

on which the two processes are executing [2]. File management was further complicated by the

need to support shared stream o�sets: when one of those two processes writes to the �le, the

next operation from the other process must reect the new o�set resulting from that write|even

though the operation takes place on another host.

4 Evaluation

Because process migration has been in day-to-day use for only a few weeks as of this writing,

we have di�culty assessing its e�ectiveness. Migration was clearly well-accepted once it was made

available to other users, despite any initial instability. However, the real \proof of the pudding"

will come once migration has remained in regular use despite ongoing changes to the rest of the

system. The history of process migration in Sprite is telling: although migration �rst worked for

simple test cases as early as the fall of 1986, and we presented a paper on migration in the fall of

1987 [1], we only started using migration regularly in the late fall of 1988. We had trouble getting

migration to work because we were trying to hit a moving target: the rest of the system was

evolving rapidly, and before we were to put migration into general use, changes to the rest of the

system made it unusable. As we understand it, other systems have experienced similar problems

with process migration because it interacts intimately with so many parts of the kernel [4].

In retrospect, our greatest mistake was to fail to put process migration into general use at

the �rst opportunity: there was a window of time when we potentially could have started using

migration (if we had been prepared with suitable user-level utilities to manage such things as host

selection). Now that migration is used routinely for remote execution, we should discover quickly

if anything should cause it to stop working. However, we could have avoided some poor design

decisions|from the perspective of migration|elsewhere in the system if their impact had been

apparent earlier.

Our greatest success was to put a fully transparent, preemptable form of remote execution into

general use. Sprite's process migration system has a number of advantages over a less transparent

form of remote execution such as rexec:

3

� Remote processes appear in a list of processes on the home machine, so the user need not

be aware of where the processes are physically executing. One may perform operations on

processes regardless of their location, such as sending them signals.

� Processes may be moved at any time. not only at speci�c times such as fork and exec (e.g.,

LOCUS [3]) . In an environment in which \eviction" is an issue, this generality is important.

� Migration is transparent enough to let nearly any program run on multiple hosts during

its lifetime. (Exceptions include the X window system display server and the user-level

process that interfaces Sprite to the internet.) A process behaves in all respects as though it

executes on a single host. Also, programs do not need to be coded specially to take advantage

of migration.

We look forward to using process migration regularly and plan to evaluate its performance

more quantitatively in the near future.

References

[1] F. Douglis and J. Ousterhout. Process migration in the Sprite operating system. In Proceedings

of the 7th International Conference on Distributed Computing Systems, pages 18{25, Berlin,

West Germany, September 1987. IEEE.

[2] M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite network �le system. ACM

Transactions on Computer Systems, 6(1):134{154, February 1988.

[3] G. J. Popek and B. J. Walker, editors. The LOCUS Distributed System Architecture. Computer

Systems Series. The MIT Press, 1985.

[4] M. Theimer. Personal communication.

[5] M. Theimer. Preemptable Remote Execution Facilities for Loosely-Coupled Distributed Systems.

PhD thesis, Stanford University, 1986.

[6] E. Zayas. Attacking the process migration bottleneck. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles, pages 13{22, Austin, TX, November 1987.

4

